
International Journal of Theoretical Physics, Vol. 34, No. 10, 1995 

Bifurcation of Kovalevskaya Polynomial 

F. M. EI-Sabaa 1 

Received August 23, 1994 

1. INTRODUCTION 

The rotation of a rigid body about a fixed point in the Kovalevskaya 
case, where A = B = 2C, Y0 = z0 = 0 (A, B, C are the principal moments 
of inertia; x0, Yo, z0 represent the center of mass), has been reduced to 
quadrature, and the system can be integrated to a Riemann 0-function of two 
variables (Kovalevskaya, 1889). 

The qualitative investigation of the motion of Kovalevskaya tops has 
been undertaken by many authors, starting with Applort (1940) and continuing 
with Kozlov (1975, 1980). 

Kolossoff (1903) transformed the Kovalevskaya problem into plane 
motion under a certain potential force. By using elliptic coordinates, Kolossoff 
proved the inverse problem, i.e., he converted the plane motion system into 
a Kovalevskaya system. 

The qualitative investigation of the motion in the two-dimensional tori 
is given here in order to obtain the bifurcation and the phase portrait of 
the problem. 

2. THE KOVALEVSKAYA EQUATIONS 

The equations of motion of a rigid body rotating about a fixed point in 
the Kovalevskaya case can be written in the form (Golubef, 1953) 
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d x  1 
2 - - 7  = ( - r x l  - ~3)i 

a " s  

d x  2 
2--77 = (rx2 + ~/3)i 

a [  

dt (62 - ~1 + x 2 - x~)i 

- r ( l i  
dt  

d~2 _ r~2i 
dt  

d ~ 3  __ (X2~ 1 __ X l ~ 2  Jr- X l X 2 ( X  1 - -  x2))i 
dt  

(1) 

where the first integrals of the problem are 

'~1~2 = k 2 

~ = 1 - k = + x ~ ( ,  + x ~ 2  - x~x22 2 

r 2 = 6fl + ~1 - ~2 - (Xl  -F x 2 )  2 

~ 3  = 2e  - xz~l - x2 + XlXz(Xl + x2) (2) 

By using Jacobi's last multiplier, the system (1) can be reduced to quadrature, 

dsi ds2 
_ _ +  - -  - 0  

s2) 
sl dsl s2 ds2 dt  

_ _  J U  - -  - -  

~ ~/~p(s2) 2 

where the Kovalevskaya polynomial q0(s) is defined as 

~ ( s )  = 8 { s [ ( s  - 3e~ )  2 + 1 - k 2] - 2 e 2 } { ( s  - 3e~ 

(3 )  

- k ) ( s  - 3s  + k ) }  

The system (3) can be also written in the form 

dsx v/2 
- -  - -  d t  

, / ~ ( s ~ )  s~ - s2 

ds2 
- - - d t  

, / ~ ( s 2 )  s l  - s2 

Kolossoff (1903) introduced the potential 

(4) 
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p 2 - k x +  1 
U - , [3 = ( x  2 -[- y2)t/2 (5) 

9 

tO reduce the system (1) to the plane motion system defined as 

x " -  OU 
Ox 

OU 
y" - (6) 

Oy 

(' - -  d/d,r), where the relation between the old and the new times t and T is 

dT = 2(rxl + ~/3)(rx2 + 3'3) dt (7) 
(x~ - x 2 )  2 

and the constants of  energy in the two systems must be equal, i.e., 3e~ = h. 
By taking the elliptic coordinates ~, i~ such that 

x = - - + k  
k 

l ~.L2)] i/2 y = k [()kz - k Z ) ( k  2 - 

with Jacobian matrix M defined as 

fOx~Oh Ox/Ol~ 
M = ~Oy/Oh Oy/Ol~/ 

one can give the momenta  Px, Py as a function o f  Px, P~, such that 

and so we get 

Px = 
(k 2 - kZ)l.LPx - (].L 2 - -  k2)~kptz 

k(h 2 -  Ix 2) 

[(~.2 - -  k 2 ) ( k  2 _ ~L2)]l/2(~kp~. _ ~,.Lpp,) 

p y - -  k(~k 2 - ~L 2)  

The system is a Liouville system, where the constants of  integration 3~1 -- 
h and C are found from 

(~k 2 - kZ)p 2 + 2X 3 + 2(1 - kZ)h - 2hZh 

= (~2 _ kZ)p~ + 21.z3 + 2(1 - k2)l~ - 21~2h = C (8) 
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and the momenta  Px and p~ are given by 

(9) 

By using the Hami l ton-Jacob  equations, we obtain 

dh 
[~p(~k)(~k 2 -- k2)]1/2 

hdX 
[r __ k2)]1/2 

By using the change of  time 

+ dtx = 0 
[~p(tx)(t, 2 - k2)1~/2 

~dl* d'r (10) 
+ [~(bt)(i.z2 -- k2)]1/2 - v/~(h. + 13.) 

KT 
- -  d t  (11) 

42(x + ~) 

the equations (10) become the Kovalevskaya equations (3), where the 
polynomial  

P(u)  = (/.12 - -  k2)tp(u) 

corresponds to the Kovalevskaya polynomial  ~p(s). 
Returning to the Kovalevskaya system (4), introducing the time "r defined 

in (11), we have 

ds I d'r 

s{ - s~ 

ds 2 _ d"r 

, / ,p(s2)  s~ - s ,  ~ 
(12) 

If we put s i = S i - -  3e, then the function q~ (s) takes the form 

~p(s) = - { ( s  + h)(s 2 q- 1 - k 2) - 2e2}(s 2 - -  k 2 )  

and equations (12) become 

(s 2 + 1 - k 2) dsl 

, / , p ( s , )  

By integrating, we have 

dsl__~ + ds2 -- 0 

, /+(s2) 

(S 2 or" 1 - -  k 2) Ks 2 
+ = d'r 
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ii ~o ds----!--~ + 
d s  2 

- const 
. / ~ ( s2 )  

Ill (ST + 1 -- k 2) dSl 
�9 - ~  

+ (~2 (s~ + 1 - k 2) ds2 

L 2o 
= T - - T  0 (13) 

Now if we define a function V such that 

V= f~io(S~ +Sl(1 -k2)  +h(s~ + 1 - k 2 ) -  262) '/2 
' -'s 7S21 dSl 

+ f T o ( s 3 + s 2 ( 1 - t c 2 ) + h ( s ~ + l - k i ) - 2 e 2 )  ' ' 2 "  -i ~ - s~  ds2 (14) 

then it is easy to find 

OV 
- const 

062 

OV 
- - ~ T - - T o  Oh 

which are the same as equations (13). So if we write the function Vin the form 

V= f Pl dsl + f p2 ds2 (15) 

then we have the following relations: 

s ~ + s , ( 1 - k  2 ) + h ( s ~ +  1 - k  2 ) - 2 6 2 = p ~ ( k  2 - s  2) 

s~+s2(1  - k  2) + h(s 2+ 1 - k  2 ) -262  = p Z ( k Z - s  2) (16) 

and the function V becomes the complete integral of the Hamilton-Jacob 
equations 

.(ou, ) 
\ Osi si = h (17) 

Equation (17) can be separated and the problem reduced to quadrature. 
Solving the inversion problem (17), we get the Kovalevskaya problem. 

The above discussion allows us to study the bifurcation and the phase 
portrait of the two-dimensional invariant tori of Kovalevskaya's problem, 
where the Kolossoff variables are the same as the Euler-Poisson variables. 
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3. P H A S E  P O R T R A I T  OF T H E  S E P A R A T E D  F U N C T I O N S  

Consider the function 

f = q3 + q(1 - k 2) + h(q 2 + 1 - k 2) - p2(k2 - q2) (18) 

We shall construct the lines of  c o n s t a n t f o n  the plane (p,  q), which is called 
the phase portrait o f  f The phase portrait helps us to find the topological  
interpretation of  the trajectory as follows: if  the roots o f  the function are 
distinct for given initial values of  (p,  q), then P(Pl ,  P2) and Q(qb q2) will 
change in a periodic manner,  but if  the function has mult iple  roots, then we 
have an infinity of  motion,  which gives an asymptot ic  solution of  the canonical 
equations. Thus the study of  lines of  c o n s t a n t f  provides a complete  picture 
of  the bifurcations of  Kova levskaya  polynomial .  

To construct the lines of  constant f,  we  first s tudy the singular points 
o f f .  These points can be found from the equat ions 

Of _ p (k  2 _ q2) = 0 (19) 
a p  

O f _  k2 - -  - 3q 2 + 2hq + 1 - + p2q = 0 (20) 
Oq 

and hence we have the following: where p = 0 we get 

3q 2 + 2hq + 1 - k 2 -- 0 (21) 

and when p = 0, q = k, we get the two equations 

1 
p2 = - h  - k - - -  (22) 

2k 

1 
p2 = - h  + k + - -  (23) 

2k 

(k > 0). The posit ive regions of  the functions 

f l  = h 2 + 3k 2 - 1 

f2  = - 2 h ~  - 2 ~  2 - 1 

f3 = - 2 h k  + 2k z + 1 

are shown in Fig. 1. It is clear that the cu rve f l  = 0 is tangent  to the branches 
of  the curves f2 and f3 at the points k = +1/2 .  This  can be found from the 
consideration that the equation f l  = f2 gives the two roots (kj, hi),  (k2, h2) 
such that 

sign kl �9 sign k 2 < 0 
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and f rom f2 = 0 we have  h = - k  - 1/2k; substituting in the equationf~ = 
0, we get 

1 
4k 2 + ~ - 2 = 0 

In the same manner,  we get the points be tween the curves fl  = 0 and 
the branches o f f >  

We study the mot ion  in domain D; (i -- 1, 2, 3, 4), where the real mot ion 
occurs in the regions {k > 0, h > - 1  }. 

1. The First Region DI: fl < O, f2 < O, f3 > 0 

Equations (21) and (22) are not solved when p = 0 and q = k, and 
hence there are no singular  points of  f on the line p = 0 and q = k, while 
when q = - k ,  we have  two singular points with p coordinates 

P =  +-(2k2- 2hk + 1) ' / 2 2 k  

To get these types of  points, we put 

q - k + y ,  p + ( 2 k 2 - 2 h k +  l f  
= = -  + x  

2k 

in the function f,  neglect ing terms of  degree > 2 :  

( - k  2 -  hk + l y 2  u  2 k 2 -  2hk + 1. 
f = k 2k xy + Ao 

(A0 is the value o f f  when x = y = 0). 
The singular points are hyperbolic points, where  

a2f/Ox 2 O2f/Ox Oy 
02f/Oy Ox Ozf/Oy 2 < 0 when x = y = 0 

The phase portrait of  the function f i n  the domain  D~ is shown in Fig. 2. The  
lines p = 0, q = + k  are the lines of  constant function f.  The phase portrait  
is symmetr ic  with respect  to the line p = 0. 

2. The Domain D2: fl > O, f2 < O, f3 > 0 

On the line p = 0, there are two singular points: 

The singular points become  (_+ [(k 2 - 1)1/213], 0) with the conditions h = 0, 
k > 1. The function f takes the form 
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where 

f =  +[3(k 2 - 1)lmy2 
2k 2 + 1 X2 

3 

p = x ,  q =  _ - -  + y  

There are two hyperbolic points on the line q = - k ,  while on the line q = 
k there are no singular points. 

Figure 3 shows the phase portrait on the domain D2. It can be noted 
that the points 1, 2, and 4 are hyperbolic and point 3 is elliptic. 

3. In the Domain D3: f l  > O, f2 < O, f3 < 0 

At p = 0 we have the two points with q coordinates 

- h  +_ (h z -  3k 2 + 3 )  j/2 
ql,2 = 3 

We take the case k = 1, h > >  0 and the points become ( -2h /3 ,  0) and (0, 0). 
The function f takes the form 

The phase portrait is shown in Fig. (4), where the points 5 and 6 are 
hyperbolic points 

4. In the Domain 04: f l  > O, f2 < O, f3 > 0 

Finally in the domain D4, we have the points 

- h  + (h 2 - 3k2) 1/2 
p = 0, ql,2 = 3 

and we get the phase portrait of f which shown in Fig. 5, where the 
points 7 and 8 are elliptic and hyperbolic, respectively. 

We conclude with some results related to the behavior of the motion: 
l. There are no multiple roots of the function f, and consecutively p, q 

are changing periodically. 
2. The elliptic points in the figures are stable in the Lyapunov sense, 

because a small disturbance will result in a closed trajectory that surrounds 
it and along which the state of the system remains close to these points. 

3. The hyperbolic points are unstable because any small disturbance 
will result in a trajectory on which the state of the system deviates more and 
more from these points as t goes to infinity. 
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Fig. 5. The phase portrait o f f  in the region D 4. 

-=-7 q/ 
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